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Abstract

Our actions shape what we learn. Because of this dependency,
learners are proficient at choosing their actions to maximize
their information gain. But learning often unfolds in social
contexts where learners have both informational goals (e.g., to
learn how something works) but also social goals (e.g., to ap-
pear competent and impress others). How do these different
factors shape learners’ decisions? Here, we present a compu-
tational model that integrates the value of social and informa-
tional goals to predict the decisions that people will make in
a simple active causal learning task. We show that an empha-
sis on performance or self-presentation goals leads to reduced
chances of learning (Exp. 1) and that social context can push
learners to pursue performance-oriented actions even when the
learning goal is highlighted (Exp. 2). Our formal model of
social-active learning successfully captures the empirical re-
sults. These findings are first steps towards understanding the
role of social reasoning in active learning contexts.
Keywords: active learning; social reasoning; information
gain; OED; self-presentation; goal tradeoffs

Introduction
Imagine you are a novice cook and you have to decide what
meal to prepare for a first date. Should you choose an easy fa-
vorite or attempt to make something new? While the familiar
recipe can ensure a good meal, you may miss out on a new,
delicious dish. The new recipe might taste even better, but it
has a higher chance of failure. In this type of explore-exploit
dilemma (Sutton & Barto, 1998), you can choose between ex-
ploring the new recipe that may or may not result in a more
delicious dish (learning goal), or exploiting your previous ex-
perience and knowledge to ensure a good meal (performance
goal). Here, we explore the idea of formalizing the learning-
performance goal tradeoff using a simple active learning con-
text, where social factors may shape the goals we consider.

Active learning occurs when people have control over the
sequence of information in a learning context (e.g., press but-
tons on a toy, one by one, to see their effect). The key assump-
tion of this framework is that learners maximize the utility of
their actions by gathering information that is especially help-
ful for their own learning. Empirical work in education (Gra-
binger & Dunlap, 1995), machine learning (Settles, 2012),
and cognitive psychology (Castro et al., 2009) suggests that
active contexts lead to faster learning than passive contexts
where people don’t have control over the information flow.

But real-world learning usually takes place in rich so-
cial contexts with teachers, peers, or other people who can
directly influence our learning. Indeed, adults and even
preschool-aged children modulate their inferences depend-
ing on how others (e.g., teachers) select their actions (Shafto,
Goodman, & Frank, 2012), and understand that socially com-
municated information licenses different inferences than in-

formation generated on their own (e.g., Xu & Tenenbaum,
2007). But even when we learn from our own actions instead
of others’, our social environment may affect our self-directed
learning process. While previous models have captured how
we optimize learning, either from our own actions or from
others, they have been agnostic to other social factors that are
ubiquitous in a learner’s environment. People must integrate
the value of social goals (e.g., looking competent or knowl-
edgeable) and informational goals when deciding what to do.

How can active learning models accommodate this richer
set of utilities? As a step towards answering this question,
we model a learner who considers a mixture of learning
and performance goals. A key assumption underlying re-
cent Bayesian models of human social cognition is that peo-
ple expect others to act approximately optimally given a util-
ity function (e.g., Goodman & Frank, 2016; Jara-Ettinger,
Gweon, Schulz, & Tenenbaum, 2016). Our model adopts this
utility-theoretic approach, and assumes an agent who reasons
about the utility function that represents a weighted combi-
nation of multiple goals (Yoon, Tessler, Goodman, & Frank,
2017) in a social active learning context.1

We instantiate our model in a simple causal learning task
and examine how people choose actions that support learn-
ing vs. performance goals in different social contexts. We
present a toy with an ambiguous causal mechanism (Fig. 1).
For this toy, doing only one of the two possible actions (han-
dle pull or button press) disambiguates its causal mechanism
but potentially risks no immediate effect (i.e., neither sound
nor light turning on), while doing both actions at the same
time is immediately rewarding (both music and light on) but
is not informative for learning the toy’s causal mechanism.

1Such models are commonly used to approximate group-level
behavior, without the strong assumption that individuals must be
strictly optimal (e.g., Frank, 2013; Goodman et al., 2015).

Figure 1: An example of the toy used in our paradigm.



Figure 2: Model schematic for the learner’s inference. The learner considers possible hypotheses: Toy 1 (handle pull turns on
the light, button press turns on music, both actions cause both effects); Toy 2 (handle pull turns on music, button press turns on
the light, both actions cause both effects); and Toy 3 (both actions cause both effects, but each action on its own does not produce
any effect). The learner also considers his goals. When an observer is absent, he considers his learning goal and performance
goal and chooses an action. The learning goal favors a “single” action (e.g., pull the handle only) that can fully disambiguate,
whereas the performance goal favors the “both” action (pull the handle AND push the button) that guarantees the most salient
reward. When an observer is present, the learner considers the learning, performance (not shown), and self-presentation goal.

Thus, the learner can choose between the two actions that
will each lead to either a new discovery (exploration; learn-
ing) or an immediate reward (exploitation; performance). The
learner’s action rests on relative utilities he assigns to learning
versus performance, which in turn are determined in part by
the social context (e.g., the presence or absence of his boss).2

In two experiments, we show that emphasizing perfor-
mance or self-presentation (social) goals leads to actions
that are not informative and thus reduces the chances of
learning (Exp. 1). Next, we show that the mere pres-
ence of an observer (i.e., a boss) pushes learners to con-
sider performance/presentation-oriented actions even when
the learning goal is highlighted (Exp. 2). Finally, we show
that the empirical results are consistent with predictions of
our cognitive model of social-active learning.

Computational model
We model a learner L who chooses his action a approximately
optimally (as per optimality parameter λ) based on the ex-
pected total utility Ut given his action and presence of an ob-
server o:

PL(a|o) ∝ exp(λ ·E[Ut(a,o)]).

The total utility is defined as:

Ut(a,o)= φlearn ·Ulearn(a)+φper f ·Uper f (a)+δ
o ·φpres ·Upres(a),

where φs are weights that are inferred for each utility from
data and δo is a Dirac delta function that is 1 if there is an

2From here on, we use a male pronoun for Bob, the learner, and
female pronoun for Ann, the boss and observer.

observer, and 0 if there is no observer. Below we describe the
structure of each utility (see Fig. 2 for the model schematic).

Learning utility The learning utility captures the goal to
learn new information, which in our paradigm is associated
with figuring out how a given toy works. The learning util-
ity (Ulearn) in our model is derived from Optimal Experiment
Design models (OED; Nelson, 2005), which quantify the ex-
pected utility of different information seeking actions. The
learner is uncertain about the mechanism of toy t and wants
to decrease his uncertainty by taking an action. This decrease
is captured by information gain due to an action, the change
in the learner’s entropy (uncertainty) before and after seeing
an outcome of the action. To maximize information gain,
the learner sums the information gain due to each outcome
m in the set of possible outcomes M (e.g., music playing),
weighted by the probability of that outcome given the action.
Thus,

Ulearn(a) ∝ ∑
m∈M

P(m|a)[H(t)−H(t|m,a)],

where H(t) is the Shannon entropy of the learner’s guess
about the toy (MacKay, 2003). Once the learner chooses an
action and observes an outcome, then he updates his beliefs
about each hypothesis via standard Bayesian updating. Fi-
nally, we scale the utility by log2n, where n is the number of
possible actions, to convert the utility to a value between 0
and 1.

Performance utility The performance utility is the utility
of achieving an immediate rewarding outcome. Within our
paradigm, the learner gains utility from an immediate effect



of music or light turning on. The expected performance utility
(Uper f ) before the learner chooses an action is the likelihood
of an effect m given the action a:

Uper f (a) = PL(m|a).

Presentation utility When there is another person present
to observe the learner’s action, the observer O is expected to
reason about the learner L’s competence, equal to whether
the learner was able to make the toy produce an effect. The
learner thinks about the observer’s inferential process, and the
expected presentation utility (Upres) is based on maximizing
the apparent competence inferred by the observer:

Upres(a) = PO(m|a),

where PO(m|a) is the observer’s own estimate of the likeli-
hood of an effect given the learner’s action.3

Experiment 1
In Experiment 1 (Exp. 1), we first wanted to confirm that par-
ticipants would choose different actions depending on what
goal was highlighted. We were also interested in how peo-
ple would act when no explicit goal was specified within the
task. Participants were asked to act on a toy with an am-
biguous causal structure, and were assigned to different goal
conditions: (1) Learning (i.e., learn how the toy works), (2)
Performance (e.g., make the toy play music), (3) Presenta-
tion (i.e., impress their boss), and (4) No goal specified. We
hypothesized that participants would choose an informative
action more often in the following order of goal conditions
(decreasing): Learning, No-goal, Performance, and Presenta-
tion.4

Method
Participants We recruited 196 participants (45-51 per con-
dition) on Amazon’s Mechanical Turk, with IP addresses in
the US and a task approval rate above 85%. We excluded 7
participants who failed to answer at least two out of three ma-
nipulation check questions correctly (see Procedure section
for details on the manipulation check), and thus the remain-
ing 189 participants were included in our final analysis.

Stimuli and Design We presented images and instructions
for three different toys that looked very similar but worked
in different ways (see captions for Fig. 2). The instructions
conveyed that pressing the button and pulling the handle at
the same time was immediately rewarding but uninformative
(fails to disambiguate the causal mechanism). In contrast,
either of the single actions was completely disambiguating,
but was uncertain to produce an immediate outcome. Each
toy had a label at the front, indicating the correct action(s)–
outcome link.

3We assume that the observer is naive about the toy’s causal
structure; if the observer is knowledgeable, Uper f and Upres will di-
verge, which is an important consideration for future work.

4Our hypothesis, method, model and data analysis were pre-
registered prior to data collection at https://osf.io/kcjau.

Figure 3: Behavioral results for Exp. 1. A: Proportion of
action decisions for each goal condition. Error bars are 95%
binomial CIs based on a Bayesian beta-binomial model. B:
Distribution of response times on the action decisions. C:
Distribution of participants’ belief change (information gain
in bits) as a function of condition. Higher values represent
more information gained from the action selection.

We asked participants to act on one of these toys; impor-
tantly, the given toy was missing its label, leading to uncer-
tainty about its causal structure. We randomly assigned par-
ticipants into four goal conditions. In the No-goal condition
we did not specify any goal for participants. In the Learning,
Performance, and Presentation conditions, we asked partici-
pants to imagine they were toy developers and one day their
boss approached them. We instructed participants to: figure
out the correct label for the toy (Learning); make the toy play
music (or turn the light on; Performance); or impress their
boss and show that they are competent (Presentation). We
asked participants to select an action out of the following set:
“press the button”, “pull the handle”, or “press the button and
pull the handle.” The order of actions was randomized.

Procedure In the exposure phase, we showed participants
an example toy and gave instructions for three toy types. We

https://osf.io/kcjau


first presented the instructions for the single action toys (Toy
1 and Toy 2) in a randomized order, and then presented the in-
structions for the both action toy (Toy 3). After instructions,
participants indicated what action would make each toy oper-
ate (e.g., “How would you make [this] toy play music?”) to
show that they understood how the different toys worked.

In the test phase, participants read a scenario for one of
the four goal conditions, followed by the question: “If you
only had one chance to try a SINGLE action [to pursue the
specified goal], which action would you want to take? You
will get a 10 cent bonus . . . if you [achieve the given goal]”.

Both before and after the critical action decision trial, we
asked participants to rate the likelihood that the unknown toy
was Toy 1, 2, or 3, which indexed participants’ prior beliefs
about how the toys were likely to function and their belief
change after selecting an action and observing its effect.

Results and discussion
Action decisions: We modeled action decisions using a lo-
gistic regression action ∼ goal condition with the No-goal
condition as the reference category.5 Participants’ tendency
to select a “single” action (button press or handle pull, each
on its own) varied across conditions as predicted (Fig. 3A),
with the highest proportion in the Learning condition, fol-
lowed by No-goal, Performance, and Presentation.

Compared to the No-goal condition, participants selected
the single action at a greater rate in the Learning condition
(β = 1.18, [0.82, 1.55]) and at lower rate in the Presentation
context (β = -1.53, [-2, -1.06]), with the null value of zero
difference condition falling well outside the 95% HDI, and at
similar rate in the Performance condition (β = -0.65, [-1.04,
-0.27]) with the 95% HDI including the null.

Action decision times: We analyzed decision times, which
were the latency to make an action selection as measured
from the start of the action decision trial (all RTs were an-
alyzed in log space), using the same model specification as
action decisions. Fig. 3A shows the full RT data distribution.
Compared to the No-goal condition, participants took longer
to generate a decision in the Learning condition. In contrast,
participants in the Performance and Presentation conditions
produced similar decision times.

Belief change: We quantified participants’ change in be-
liefs about the toy using information gain. We computed
the Kullback-Leibler (KL) divergence both before and after
participants’ action selections. The KL divergence gives a
measure of the distance between the correct6 probability dis-
tribution and the participant’s beliefs about the identity of

5In all of the analyses for Exp. 1 and Exp. 2, we used the rsta-
narm package to fit Bayesian regression models estimating the dif-
ferences across conditions. We report the uncertainty in our point
estimates using 95% Highest Density Intervals (HDI). The HDI pro-
vides a range of credible values given the data and model.

6Note that since the action-effect link was deterministic, the cor-
rect belief distribution is a function of participant’s action decision.
For example, if a participant selected the button action, then Bcorrect
placed 100% of the probability mass on the button hypothesis.

the unlabeled toy. We notate participants’ belief distribu-
tions as Bprior and Bprior+a and the correct distribution as
Bcorrect . The difference between these KL divergences pro-
vides the number of bits of information gained due to the ac-
tion: IG(a) = DKL(Bcorrect ||Bprior)−DKL(Bcorrect ||Bprior+a).

We modeled information gain as a function of goal
condition and action choices: IG ∼ goal condition +
action response (Fig. 3C). Across all conditions, people who
selected the single action showed a greater gain in bits of in-
formation (βsingle = 0.91, [0.77, 1.05], i.e., learned more from
their action. We did not see evidence of an interaction be-
tween goal and action selection. However, a larger propor-
tion of participants selected a single action in the Learning
context, so learning was more likely in this condition.

Experiment 2
In Exp. 1, we confirmed that participants selected different
actions depending on the type of goal emphasized. In Exp. 2,
our goals were three-fold: (1) to replicate the results from
Exp. 1; (2) to manipulate goals and the presence/absence
of another person (social/no-social) independently, allowing
us to measure the interaction between goals and social con-
text; and (3) to compare empirical data with predictions of
our computational model. Our key behavioral prediction was
an interaction: that participants would be less likely to se-
lect a single (more informative) action in the Learning goal
and No-goal conditions when their boss was present. We also
predicted a null result: that the presence of the boss should
not affect action decisions in the Performance condition.

Method
Participants Using the same recruitment and exclusion cri-
teria as Exp. 1, we recruited 347 participants (42-51 per con-
dition), and included 325 participants in our final analysis.

Stimuli and Design The stimuli and design were identical
to Exp. 1, except we had 7 different goal × social conditions.
Goals were identical to Exp. 1; social context varied depend-
ing on whether the boss was present (Social) or absent (No-
social) in the story. The conditions were: Social-learning,
Social-performance, Social-presentation, No-social-no-goal,
No-social-learning, No-social-performance, and Social-no-
goal. Note that we did not have No-social-presentation con-
dition, because the presentation goal was defined by present-
ing oneself as competent to another person.

Procedure The procedure was identical to Exp. 1.

Results and discussion
Action decisions: We modeled action decisions using a
logistic regression specified as action ∼ goal condition ∗
social context with the No-social-no-goal condition as the
reference category. We replicated the key finding from
Exp. 1: participants selected a “single” action more often in
the Learning goal condition, followed by the No-goal, Per-
formance, and Presentation conditions (Fig. 4A). There was
a main effect of social context, with participants being less



likely to select the single action when their boss was present
(β= -0.521, [-1.005, -0.053]). Finally, there was evidence for
a reliable interaction between goal condition and social con-
text such that the effect of social context was present in the
Learning and No-goal conditions, but not in the Performance
condition (β int = 1.148, [0.049, 2.296]).

Action decision times: We replicated the key decision
time finding from Exp. 1, with participants making slower
decisions in the Learning context as compared to Perfor-
mance/Presentation. On average, participants took 39.32 sec-
onds to generate a response in the No-goal condition and
40.72 seconds in the Learning condition. In contrast, deci-
sions were faster in the Performance (β = -7.67 sec, [-14.01, -
1.25]) and Presentation (-10.66 seconds, [-18.37, -3.36]) con-
ditions, which were similar to one another (Fig. 4B). There
was no evidence of a main effect of social context or an inter-
action between goal condition and social context. Note that
here we did not see a difference in decision times between the
Learning and No-goal conditions, which is different from the
pattern in Exp. 1.

Belief change: We replicated the information gain effect
from Exp. 1: Participants who selected a single action showed
greater information gain across all conditions (βsingle = 0.63,
[0.4, 0.86]. There was no evidence of a main effect of social
context or two-/three-way interactions between social con-
text, goal, and action choice. As in Exp. 1, more partici-
pants selected the single action in the Learning condition, es-
pecially in the No-social context, meaning information gain
was most likely in this learning context.

BDA model-data fit: In our paradigm, participants chose
an action based on a certain goal.7 We assumed that the goal
descriptions (e.g., “impress your boss”) conveyed to the par-
ticipants a particular set of goal weights {φlearn, φper f , φpres}
used to generate action choices. We put uninformative priors
on these weights (φ∼Uni f (0,1)) and inferred their credible
values for each social-goal condition, using Bayesian data an-
alytic techniques (Lee & Wagenmakers, 2014).

The inferred goal weights were consistent with what we
predicted (Fig. 4D). φlearn was highest for the No-social learn-
ing condition, whereas the φper f and φpres together made up
the highest portion in the Presentation condition, with high
social pressure to appear competent compared to other condi-
tions.

We also inferred another parameter of the cognitive model,
the optimality parameter λ. We put uninformative prior on the
parameter (λ ∼Uni f (0,10)) and inferred its posterior credi-
ble value from the data. We ran 4 MCMC chains for 100,000
iterations, discarding the first 50,000 for burnin. The Maxi-
mum A- Posteriori (MAP) estimate and 95% Highest Proba-
bility Density Interval (HDI) for λ was 4.79 [3.96, 6.2].

7For action priors, we used a separate task in which people indi-
cated the likelihood for selecting an action without any information
about possible hypotheses or goals. We used the mean likelihood for
each action choice as baseline priors in our model.

Figure 4: Behavioral and model results for Exp. 2. A: Action
decisions from human data (top) and fitted model predictions
(bottom). Color represents social context. B and C: Decision
times and belief change respectively, collapsing across social
contexts. D: Inferred phi values for each condition. All other
plotting conventions are the same as Fig. 3.



The fitted model predictions of action choices are shown
in Fig. 4A (bottom). The model’s expected posteriors over
action choices capture key differences between conditions:
the single action was more likely for No-social than Social
conditions overall, but not when the performance goal was
highlighted. The model was able to predict the distribution of
action responses with high accuracy r2(21) = 0.9.

General Discussion
How do social contexts shape active learning? We proposed
that people integrate informational vs. social goals when de-
ciding what to do. In two experiments, we showed that peo-
ple chose more informative actions when learning goals were
highlighted and in the absence of a relevant social context
(no boss present), while they chose more immediately re-
warding actions when performance/presentational goals were
highlighted, especially when a boss was present. When no
goal was specified, people’s behavior seemed to reflect a mix-
ture of goals. Our model of social-active learning success-
fully captured key patterns in the people’s action decisions.

This work begins to bring active learning accounts into
contact with social learning theories. We used ideas from Op-
timal Experiment Design, which models active learning as a
process of rational choice to maximize information gain, and
Rational Speech Act models, which formalize recursive so-
cial reasoning within a Bayesian framework. We included so-
cial information within a formal utility-theoretic framework,
building a richer utility function that represented a weighted
combination of multiple goals – informational and social.

There are limitations to this work that present opportuni-
ties for future work. First, we did not differentiate between
performance and presentation goals, since the choice of do-
ing both actions satisfies both of these goals in our paradigm.
Enriching the space of possible actions could tease apart ac-
tions driven by self-presentation. Second, we used a particu-
lar social context (the presence of a boss) to emphasize pre-
sentational goals. Our model can be extended to explain a
richer set of social considerations, such as other kinds of ob-
servers (e.g., a teacher who wants the learner to select actions
that help her learn). Third, we limited people to a single ac-
tion choice. While this allowed a clean measurement of our
condition manipulations, real-world learning often involves
sequential decision-making that could cause learners to pri-
oritize different goals depending on their prior actions or the
probability of interacting with an observer in the future.

Another interesting open question is how our model could
be used to understand active learning over development. Our
framework could allow us to measure changes in children’s
goal preferences as they develop better social reasoning and
meta-cognitive abilities. One prediction is that young chil-
dren focus on learning goals earlier on when they are sur-
rounded by familiar caregivers who scaffold learning-relevant
actions. But as their social reasoning abilities mature and
their social environments become more complex, children
may start to emphasize performance or presentation goals.

Overall, this work represents a first step to answering these
rich questions that ultimately seek to unify theories on active
learning and social reasoning.

All experiments, data, model, and analysis codes
are available in the public repository for the project:
https://github.com/kemacdonald/soc-info
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