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Supplementary materials for the paper  

“Real-time lexical comprehension in young children learning American Sign 

Language” 

 

In this document, we present four pieces of supplemental information. First, we provide details 

about the Bayesian models used to analyze the data. Second, we present a sensitivity analysis 

that provides evidence that the estimates of the associations between age/vocabulary and 

accuracy/reaction time (RT) are robust to different parameterizations of the prior distribution and 

different cutoffs for the analysis window. Third, we present the results of a parallel set of 

analyses using a non-Bayesian approach to show that these results are consistent regardless of 

choice of analytic framework. And fourth, we present two exploratory analyses measuring the 

effects of phonological overlap and iconicity on RT and accuracy. In both analyses, we did not 

see evidence that these factors changed the dynamics of eye movements during ASL processing.  
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Model Specifications 

Our key analyses use Bayesian linear models to test our hypotheses of interest and to 

estimate the associations between age/vocabulary and RT/accuracy. Figure S1 (Accuracy) and 

S2 (RT) present graphical models that represent all of the data, parameters, and other variables of 

interest, and their dependencies. Latent parameters are shown as unshaded nodes while observed 

parameters and data are shown as shaded nodes. All models were fit using JAGS software 

(Plummer, 2003) and adapted from models in Kruschke (2014) and Lee and Wagenmakers 

(2014). 

Accuracy 

To test the association between age/vocabulary and accuracy we assume each 

participant's mean accuracy is drawn from a Gaussian distribution with a mean, μ, and a standard 

deviation, σ. The mean is a linear function of the intercept, α, which encodes the expected value 

of the outcome variable when the predictor is zero, and the slope, β, which encodes the expected 

change in the outcome with each unit change in the predictor (i.e., the strength of association).  

For α and σ, we use vague priors on a standardized scale, allowing the model to consider 

a wide range of plausible values. Since the slope parameter β is critical to our hypothesis of a 

linear association, we chose to use an informed prior: that is, a truncated Gaussian distribution 

with a mean of zero and a standard deviation of one on a standardized scale. Centering the 

distribution at zero is conservative and places the highest prior probability on a null association, 

to reduce the chance that our model overfits the data. Truncating the prior encodes our 

directional hypothesis that accuracy should increase with age and larger vocabulary size. And 

using a standard deviation of one constrains the plausible slope values, thus making our 

alternative hypothesis more precise. We constrained the slope values based on previous research 

with children learning spoken language showing that the average gain in accuracy for one month 

of development between 18-24 months to be ~1.5%  (Fernald, Zangl, Portillo, & Marchman, 
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2008). 

 

Figure S1. Graphical model representation of the linear regression used to predict accuracy. 
The shaded nodes represent observed data (i.e., the 𝑖!! participant's age, vocabulary, and mean 
accuracy). Unshaded nodes represent latent parameters (i.e., the intercept and slope of the linear 
model). 
 

Reaction Time 

The use of RT as a processing measure is based on the assumption that the timing of a 

child's first shift reflects the speed of their incremental language comprehension. Yet, some 

children have a first shift that seems to be unassociated with this construct: their first shift 

behavior appears random. We quantify this possibility for each participant explicitly (i.e., the 

probability that the participant is a "guesser") and we create an analysis model where participants 

who were more likely to be guessers have less of an influence on the estimated relations between 

RT and age/vocabulary. 

To quantify each participant's probability of guessing, we computed the proportion of 

signer-to-target (correct) and signer-to-distracter (incorrect) shifts for each child. We then used a  
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Figure S2. Graphical model representation of the linear regression plus latent mixture model 
(i.e., guessing model). The model assumes that each individual participant's first shift is either 
the result of guessing or knowledge. And the latent indicator 𝑧! determines whether the 
𝑖!! participant is included in the linear regression estimating the association between 
age/vocabulary and RT. 

 
latent mixture model in which we assumed that the observed data, 𝑘!, were generated by two 

processes (guessing and knowledge) that had different overall probabilities of success, with the 

"guessing group" having a probability of 50%, ψ, and the "knowledge" group having a 

probability greater than 50%, ϕ. The group membership of each participant is a latent indicator 

variable, 𝑧!, inferred based on that participant's proportion of correct signer-to-target shifts 

relative to the overall proportion of correct shifts across all participants (see Lee & 

Wagenmakers (2014) for a detailed discussion of this modeling approach). We then used each 

participant's inferred group membership to determine whether they were included in the linear 

regression. In sum, the model allows participants to contribute to the estimated associations 

between age/vocabulary and RT proportional to our belief that they were guessing. 

As in the Accuracy model, we use vague priors for α and σ on a standardized scale. We 

again use an informed prior for β, making our alternative hypothesis more precise. That is, we 

constrained the plausible slope values based on previous research with children learning spoken 
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language showing that the average gain in RT for one month of development between 18-24 

months to be ~30ms (Fernald, Zangl, Portillo, & Marchman, 2008). 

Sensitivity Analysis: Prior Distribution and Window Selection 

We conducted a sensitivity analysis to show that our parameter estimates for the 

associations between accuracy/RT and age/vocabulary are robust to decisions about (a) the 

analysis window and (b) the specification of the prior distribution on the slope parameter. 

Specifically, we varied the parameterization of the standard deviation on the slope, allowing the 

model to consider a wider or narrower range of values to be plausible a priori. We also fit these 

different models to two additional analysis windows +/- 300 ms from the final analysis window: 

600-2500 ms (the middle 90% of the RT distribution in our experiment). 

Figure S3 shows the results of the sensitivity analysis, plotting the coefficient for the β 

parameter in each model for the three different analysis windows for each specification of the 

prior. All models show similar coefficient values, suggesting that inferences about the 

parameters are not sensitive to the exact form of the priors. Table S1 shows the Bayes Factors for 

all models across three analysis windows and fit using four different vales for the slope prior. 

The Bayes Factor only drops below 3 when the prior distribution is quite broad (standard 

deviation of 3.2) and only for the longest analysis window (600-2800 ms). In sum, the strength 

of evidence for a linear association is robust to the choice of analysis window and prior 

specification. 
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Figure S3. Coefficient plot for the slope parameter, β, for four different parameterizations of 
the prior and for three different analysis windows. Each panel shows a different model. Each 
point represents a β coefficient measuring the strength of association between the two variables. 
Error bars are 95% HDIs around the coefficient. Color represents the three different analysis 
windows. 
 
Analysis 
window 

SD 
Slope Acc~Age Acc~Vocab RT~Age RT~Vocab 

600 – 2200 ms 
3.2 6.2 3.7 2.4 4.1 
1.4 14.1 5.5 3.5 8.6 
1.0 19.4 8.9 5.0 9.2 
0.7 22.7 11.6 7.8 17.0 

600 – 2500 ms 
3.2 11.0 2.3 5.6 6.1 
1.4 9.7 4.0 13.8 10.5 
1.0 12.8 6.8 12.5 18.2 
0.7 15.6 6.8 17.9 20.7 

600 – 2800 ms 

3.2 6.0 1.1 1.2 1.4 
1.4 10.7 2.6 3.5 4.7 
1.0 13.5 4.0 3.7 4.0 
0.7 15.2 4.6 5.5 5.6 

 
Table S1. Bayes Factors for all four linear models fit to three different analysis windows using 
four different parameterizations of the prior distribution for the slope parameter β. 
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Parallel set of non-Bayesian analyses 

 First, we compare Accuracy and RT of native hearing and deaf signers using a Welch 

Two Sample t-test and do not find evidence that these groups are different (Accuracy: t(28) = 

0.75, p = 0.45, 95% CI on the difference in means [-0.07, 0.14]; RT: t(28) = 0.75, p = 0.46, 95% 

CI on the difference in means [-125.47 ms, 264.99 ms].  

 Second, we test whether children and adults tend to generate saccades away from the 

central signer prior to the offset of the target sign. To do this, we use a One Sample t-test with a 

null hypothesis that the true mean is not equal to 1, and we find evidence against this null 

(Children: M = 0.88, t(28) = -2.92, p = 0.007, 95% CI [0.79, 0.96]; Adults: M = 0.51, t(15) = -

6.87, p < 0.001, 95% CI [0.35, 0.65]) 

 Third, we fit the four linear models using MLE to estimate the relations between the 

processing measures on the VLP task (Accuracy/RT) and age/vocabulary. We follow 

recommendations from Barr (2008) and use a logistic transform to convert the proportion 

accuracy scores to a scale more suitable for the linear model. 

 
Model specification β  value std. error t-statistic p-value 

logit(accuracy) ~ age + hearing status 0.003 0.012 2.59 0.008 

RT ~ age + hearing status -10.05 4.62 -2.17 0.019 
 

logit(accuracy) ~ vocabulary + hearing status 0.002 0.006 2.27 0.015  

RT ~ vocabulary + hearing status -6.34 2.18 -2.91 0.003 
 

 
Table S2.  Results for the four linear models fit using MLE. All p-values are one-sided to 
reflect our directional hypotheses about the VLP measures improving over development.  
 

Analyses of phonological overlap and iconicity 

First, we analyzed whether phonological overlap of our item-pairs might have influenced 

adults and children’s RTs and accuracy. Signs that are higher in phonological overlap might have 

been more difficult to process because they are more confusable. Here, phonological overlap is 
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quantified as the number of features (e.g., Selected Fingers, Major Location, Movement, Sign 

Type) that both signs shared. Values were taken from a recently created database (ASL-LEX) of 

lexical and phonological properties of nearly 1,000 signs of American Sign Language (Caselli et 

al., 2017). Our item-pairs varied in degree of overlap from 1-4 features.  We did not see evidence 

that degree of phonological overlap influenced either processing measure in the VLP task. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4. Scatterplot of the association between degree of phonological overlap and RT (top 
row) and accuracy (bottom row) for both adults (left column) and children (right column). The 
blue line represents a linear model fit.  
 
 

Next, we performed a parallel analysis, exploring whether the iconicity of our signs 

might have influenced adults and children’s RT and accuracy. It is possible that highly iconic 

signs might be easier to process because of the visual similarity to the target object. Again, we 
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used ASL-LEX to quantify the iconicity of our signs. To generate these values, native signers 

were asked to explicitly rate the iconicity of each sign on a scale of 1-7, with 1 being not iconic 

at all and 7 being very iconic. Similar to the phonological overlap analysis, we did see 

evidence that degree of iconicity influenced either processing measure for either age group in the 

VLP task. 

 
Figure S5. Scatterplot of the association between degree of iconicity and RT (top row) and 
accuracy (bottom row) for both adults (left column) and children (right column). The blue line 
represents a linear model fit. 
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